Scan widths were $(1.20+0.35 \tan \theta)^{\circ}$ in ω, with a background/scan time ratio of 0.5 . The data were corrected for Lorentz and polarization effects.

The Laue group assignment, systematic absences and intensity statistics consistent with centrosymmetry indicated space group $C 2 / c$ (No. 15); since refinement proceeded well, it was adopted. Fourier difference methods were used to locate the H -atom positions. Full-matrix least-squares refinement was performed. In later stages of the refinement, aromatic-ringH atoms were made canonical: $\mathrm{C}-\mathrm{H}$ distance $=0.98 \AA ; U_{\text {iso }}$ $=1.2 U_{\mathrm{eq}}$ of the attached atom. Atoms H9A and H9B (on C9A and $C 9 B$) and carboxyl- H atom H_{B} were refined isotropically.

The A molecule carboxyl-O atoms were found to be disordered over two sites, labelled A and A^{*}, with (refined and final) occupancies of 0.66 (2) and 0.34 (2), respectively. Following refinement with all but the two partially occupied carboxylic-H atoms, H_{A} and $\mathrm{H}_{A^{*}}$, included in the model, they were assigned fixed coordinates from the resulting Fourier difference map and were assigned a fixed $U_{\text {iso }}$ very slightly larger than that of the refined B molecule carboxylic- H atom, H_{B}.

The maximum effect of extinction was 4.7% of F_{o} for 004. The maximum peak in the final difference map occurred $\sim 1.2 \AA$ from $\mathrm{O} 1 A^{*}$ and $\mathrm{O} 2 A$, but was not suitably oriented to be assigned as a potential partial-occupancy carboxylic- H atom; the minimum peak occurred near the center of one of the benzenoid rings of the B molecule.

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1988). Cell refinement: MSCIAFC Diffractometer Control Software. Data reduction: TEXSAN (Molecular Structure Corporation, 1989). Program(s) used to solve structure: SHELXS86 (Sheldrick, 1985). Program(s) used to refine structure: TEXSAN. Molecular graphics: ORTEPII (Johnson, 1976). Software used to prepare material for publication: TEXSAN.

It is our pleasure to acknowledge partial support provided to AJD by a National Needs Fellowship. We thank Dr J. C. Gallucci for help of various sorts. The diffractometer was purchased with funds provided in part by an NIH grant.

[^0]
References

Belsky, V. K., Zavodnik, V. E. \& Vozzhennikov, V. M. (1984). Acta Cryst. C40, 1210-1211.
Blackburn, A. C., Dobson, A. J. \& Gerkin, R. E. (1996a). Acta Cryst. C52, 907-910.
Blackburn, A. C., Dobson, A. J. \& Gerkin, R. E. (1996b). Acta Cryst. C52, 1482-1486.
Bondi, A. (1964). J. Phys. Chem. 68, 441-451.
Ceccarelli, C., Jeffrey, G. A. \& Taylor, R. J. (1981). J. Mol. Struct. 70, 255-271.
Cromer, D. T. \& Waber, J. T. (1974). International Tables for X-ray Crystallography, Vol. IV, pp. 71, 148. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)

Gerkin, R. E., Lundstedt, A. P. \& Reppart, W. J. (1984). Acta Cryst. C40, 1892-1894.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Molecular Structure Corporation (1988). MSC/AFC Diffractometer Control Program. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
Molecular Structure Corporation (1989). TEXSAN. Single Crystal Structure Analysis Software. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
Sheldrick, G. M. (1985). SHELXS86. Crystallographic Computing 3, edited by G. M. Sheldrick, C. Krüger \& R. Goddard, pp. 175-189. Oxford University Press.
Stewart, R. F., Davidson, E. R. \& Simpson, W. T. (1965). J. Chem. Phys. 42, 3175-3187.
Zachariasen, W. H. (1963). Acta Cryst. 16, 1139-1144.
Zachariasen, W. H. (1968). Acta Cryst. A24, 212-216.

Acta Cryst. (1996). C52, 2641-2644

A New Conformationally Restricted Aspartic Acid Analogue with a Cyclohexanone Skeleton

Elena Buñuel, Carlos Cativiela, María D. Díaz-de-Villegas and José A. Gálvez

Departamento de Química Orgánica, Instituto de Ciencia de Materiales de Aragón, Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain. E-mail: cativiela@posta.unizar.es
(Received 7 May 1996; accepted 1 July 1996)

Abstract

In the compound ($1 R, 2 S$)-2-benzamido-2-methoxy-carbonyl-5-oxocyclohexane-1-carboxylic acid, $\mathrm{C}_{16} \mathrm{H}_{17}{ }^{-}$ NO_{6}, the cyclohexanone ring adopts a distorted chair conformation. The carboxylic acid and the methyl ester groups occupy the axial positions, while the benzamido group is equatorial. The values determined for the torsion angles about the $\mathrm{N}-\mathrm{C}^{\alpha}(\varphi)$ and $\mathrm{C}^{\alpha}-\mathrm{CO}(\psi)$ bonds correspond to a semi-extended conformation for the amino acid residue. The crystal structure is stabilized by two intermolecular hydrogen bonds ($\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and N $\mathrm{H} \cdots \mathrm{O}$) involving the carboxylic acid, the benzamido and the methyl ester groups.

Comment

The use of uncommon amino acid residues in the synthesis of peptides with restricted conformational flexibility has acquired increasing importance in the design of specifically folded analogues of biologically active
peptides (Liskamp, 1994; Gante, 1994). In this context, we have developed a new methodology for the stereoselective synthesis of new non-proteinogenic conformationally restricted α-amino acids that involves the use of (Z)-4-[(S)-2,2-dimethyl-1,3-dioxolan-4-yl-methylidene]-2-phenyl-5(4H)-oxazolone as a dienophile in Diels-Alder reactions with different dienes (Buñuel, Cativiela \& Díaz-de-Villegas, 1994, 1995, 1996; Buñuel, Cativiela, Díaz-de-Villegas \& Garcia, 1994) and, as part of our investigations of the conformational properties of some of these interesting compounds (Buñuel, Cativiela, Díaz-de-Villegas \& Gálvez, 1996a,b), we describe here the crystal and molecular structure of a new conformationally restricted aspartic acid analogue with a cyclohexanone skeleton, (I).

(I)

A perspective view of (I) with the numbering scheme used in this analysis is shown in Fig. 1. The cyclohexanone ring adopts a distorted chair conformation [the Cremer \& Pople (1975) puckering parameters are $Q=$ 0.497 (2) \AA and $\left.\theta=10.1(2)^{\circ}\right]$ in which the C 1 and C 4 atoms are displaced from the plane defined by the other four atoms by 0.592 (2) and -0.547 (2) \AA, respectively. As for the torsion angles relating the cyclohexane ring to the substituents, the ($+s c,-s c$) conformation (axial disposition) is adopted by the carboxylic acid and methyl ester groups, while the (ap,ap) conformation (equatorial disposition) is adopted by the benzamido group.

The methyl ester group attached to atom C 1 is planar and adopts a nearly eclipsed conformation with respect to the $\mathrm{C} 1-\mathrm{C} 2$ bond of the cyclohexane ring [the torsion angle $\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 7-\mathrm{O} 3$ is $\left.-12.0(2)^{\circ}\right]$.

The angle between the average planes of the amide and phenyl groups in the benzamido moiety is $33.8(1)^{\circ}$.

Fig. 1. The molecular structure of (I) showing 50% probability displacement ellipsoids. H atoms have been omitted for clarity.

The amide linkage is found in the usual trans conformation [the torsion angle $\mathrm{C} 1-\mathrm{N}-\mathrm{C} 9-\mathrm{C} 10$ is $174.8(2)^{\circ}$] and adopts an antiperiplanar conformation with respect to the C1-C6 bond of the cyclohexane ring [the torsion angle $\mathrm{C} 9-\mathrm{N}-\mathrm{C} 1-\mathrm{C} 6$ is $169.7(2)^{\circ}$]. The torsion angle $\mathrm{Cl}-\mathrm{C} 2-\mathrm{C} 16-\mathrm{O}$ of $-72.9(2)^{\circ}$ indicates that the axial carboxylic acid group is conveniently orientated in a conformation that avoids an eclipsing of the $\mathrm{C} 2-\mathrm{C} 3$ and $\mathrm{Cl} 6-\mathrm{O}$ bonds.

The amino acid residue adopts a semi-extended conformation; the values of the backbone torsion angles $\mathrm{C} 9-\mathrm{N}-\mathrm{C} 1-\mathrm{C} 7\left[\varphi=53.5(2)^{\circ}\right]$ and $\mathrm{N}-\mathrm{Cl}-\mathrm{C} 7-\mathrm{O} 3$ [$\psi=-132.4(2)^{\circ}$] (IUPAC-IUB Commission on Biochemical Nomenclature, 1970) fall in the F^{*} region of the conformational map (Zimmerman, Pottle, Nemethy \& Scheraga, 1977). The values of the torsion angles N$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3\left[\chi^{11}=-163.9(1)^{\circ}\right]$ and $\mathrm{N}-\mathrm{C} 1-\mathrm{C} 6-$ $\mathrm{C} 5\left[\chi^{12}=172.3(2)^{\circ}\right]$ relating the peptide chain to the cyclohexane ring reflect an (ap,ap) conformation.

In the crystal, the molecules form an infinite layer perpendicular to the crystallographic z axis (Fig. 2), characterized by two different intermolecular hydrogen bonds, i.e. an (amide) $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}=\mathrm{C}$ (methyl ester) and an (acid) $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}=\mathrm{C}$ (amide) hydrogen bond $\left[\mathrm{N} \cdots \mathrm{O}^{\mathrm{i}}\right.$ $3.003(2), \mathrm{H} \cdots \mathrm{O} 2^{\mathrm{i}} 2.09 \AA$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}^{\mathrm{i}} \quad 176^{\circ}$; $\mathrm{O} 6 \cdots 4^{\mathrm{ii}} 2.597$ (2), $\mathrm{HO} \cdots 4^{\mathrm{ii}} 1.794$ (2) \AA and $\mathrm{O} 6-$ $\mathrm{HO} \cdots \mathrm{O} 4^{\mathrm{ii}} 150^{\circ}$; symmetry codes: (i) $1-x,-\frac{1}{2}+y$, $\frac{1}{2}-z$; (ii) $\left.2-x,-\frac{1}{2}+y, \frac{1}{2}-z\right]$. The layers are held together by van der Waals forces between the phenyl groups.

Fig. 2. Packing diagram viewed down the crystallographic z axis; $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds are shown as dashed lines.

Experimental

The title compound was prepared according to a procedure described by Buñuel, Cativiela \& Díaz-de-Villegas (1996).

Crystals were obtained by slow evaporation from a hexane solution.

Crystal data

$\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{NO}_{6}$
$M_{r}=319.31$
Orthorhombic
$P 2,2,2$,
$a=8.707$ (1) \AA
$b=9.313(1) \AA$
$c=19.869(1) \AA$
$V=1611.1$ (3) \AA^{3}
$Z=4$
$D_{x}=1.316 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured
Data collection
Siemens $P 4$ diffractometer
$\theta / 2 \theta$ scans
Absorption correction: none
2219 measured reflections
2042 independent reflections 1917 observed reflections
[$I>2 \sigma(I)]$
$R_{\mathrm{int}}=0.0169$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.0321$
$w R\left(F^{2}\right)=0.0871$
$S=1.063$
2042 reflections
209 parameters
Only $U_{\text {iso }}$ refined for each H atom
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.05 P)^{2}\right.$
$+0.1993 P]$
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\max }=0.157 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.167 \mathrm{e}^{-3}$

Mo $K \alpha$ radiation
$\lambda=0.71069 \AA$
Cell parameters from 32 reflections
$\theta=3.80-12.49^{\circ}$
$\mu=0.102 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Prism
$0.68 \times 0.60 \times 0.38 \mathrm{~mm}$
Colourless
$\theta_{\text {max }}=25^{\circ}$
$h=-1 \rightarrow 10$
$k=-1 \rightarrow 11$
$l=-1 \rightarrow 23$
3 standard reflections monitored every 97 reflections intensity decay: none

Extinction correction: none Atomic scattering factors from International Tables for Crystallography (1992, Vol. C, Tables 4.2.6.8 and 6.1.1.4)

Absolute configuration: assigned on the basis of the known configuration of the $(Z)-4-[(S)-2,2-\mathrm{di}-$ methyl-1,3-dioxolan-4-yl-methylidene]-2-phenyl$5(4 H)$-oxazolone reagent

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters $\left(\AA^{2}\right)$

$U_{\mathrm{eq}}=(1 / 3) \sum_{i} \sum_{j} U_{i j} a_{i}^{*} a_{j}^{*} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$				
	\boldsymbol{x}	y	z	$U_{\text {eq }}$
	y	$z(2)$		
N	$0.6925(2)$	$0.3084(2)$	$0.25896(7)$	$0.0339(3)$
O1	$0.6665(2)$	$0.2918(2)$	$0.52787(7)$	$0.0587(5)$
O2	$0.5351(2)$	$0.5743(2)$	$0.27031(7)$	$0.0473(4)$
O3	$0.7228(2)$	$0.63323(14)$	$0.34254(7)$	$0.0475(4)$
O4	$0.8562(2)$	$0.4711(2)$	$0.21835(8)$	$0.0545(4)$
O5	$0.8262(2)$	$0.1110(2)$	$0.38483(9)$	$0.0582(4)$
O6	$1.0080(2)$	$0.2061(2)$	$0.31920(8)$	$0.0508(4)$
C1	$0.6767(2)$	$0.3829(2)$	$0.32356(9)$	$0.0302(4)$
C2	$0.8285(2)$	$0.3660(2)$	$0.36456(9)$	$0.0306(4)$
C3	$0.8115(2)$	$0.4022(2)$	$0.44029(9)$	$0.0360(4)$
C4	$0.6672(2)$	$0.3466(2)$	$0.47215(9)$	$0.0386(4)$
C5	$0.5229(2)$	$0.3693(2)$	$0.43263(10)$	$0.0430(5)$
C6	$0.5389(2)$	$0.3149(2)$	$0.36021(10)$	$0.0376(4)$
C7	$0.6375(2)$	$0.5416(2)$	$0.30784(9)$	$0.0338(4)$
C8	$0.7010(4)$	$0.7841(2)$	$0.3276(2)$	$0.0734(9)$
C9	$0.7873(2)$	$0.3571(2)$	$0.21086(9)$	$0.0367(4)$
C10	$0.8052(3)$	$0.2656(2)$	$0.14915(10)$	$0.0420(5)$

C11	$0.8003(2)$	$0.1169(2)$	$0.15274(11)$	$0.0426(5)$
C12	$0.8174(2)$	$0.0359(3)$	$0.09484(12)$	$0.0494(5)$
C13	$0.8384(4)$	$0.1018(3)$	$0.03411(12)$	$0.0707(8)$
C14	$0.8482(6)$	$0.2490(4)$	$0.03095(13)$	$0.104(2)$
C15	$0.8314(5)$	$0.3311(3)$	$0.08858(12)$	$0.0815(11)$
C16	$0.8855(2)$	$0.2126(2)$	$0.35769(10)$	$0.0363(4)$

Table 2. Selected geometric parameters $\left(\AA^{\circ},^{\circ}\right)$

$\mathrm{N}-\mathrm{C} 9$	1.342 (2)	C2-C16	1.519(3)
$\mathrm{N}-\mathrm{Cl}$	1.465 (2)	C2-C3	1.549 (3)
$\mathrm{Ol}-\mathrm{C} 4$	1.219 (2)	C3-C4	1.499 (3)
O2-C7	1.202 (2)	C4-C5	1.497 (3)
O3-C7	1.325 (2)	C5-C6	1.532 (3)
O3-C8	1.449 (3)	C9-C10	1.501 (3)
O4-C9	1.229 (2)	C10-C15	1.368 (3)
O5-C16	1.205 (2)	C10-C11	1.387 (3)
O6-C16	1.314 (2)	$\mathrm{Cl1-C12}$	1.384 (3)
C1-C6	1.540 (3)	$\mathrm{Cl} 2-\mathrm{Cl} 3$	1.366 (4)
$\mathrm{Cl}-\mathrm{C} 7$	1.549 (2)	Cl3-C14	1.375 (4)
$\mathrm{Cl}-\mathrm{C} 2$	1.560 (3)	C14-C15	1.385 (4)
$\mathrm{C} 9-\mathrm{N}-\mathrm{Cl}$	121.44 (15)	O2-C7-03	125.2 (2)
C7-O3-C8	116.4 (2)	O2--C7-Cl	122.0 (2)
$\mathrm{N}-\mathrm{Cl}-\mathrm{C} 6$	107.03 (14)	O3-C7-Cl	112.72 (15)
$\mathrm{N}-\mathrm{Cl}-\mathrm{C} 7$	107.21 (14)	O4-C9-N	120.4 (2)
$\mathrm{C} 6-\mathrm{Cl}-\mathrm{C} 7$	108.4 (2)	$\mathrm{O} 4-\mathrm{C} 9-\mathrm{C} 10$	122.6 (2)
$\mathrm{N}-\mathrm{Cl}-\mathrm{C} 2$	109.28 (14)	$\mathrm{N}-\mathrm{C} 9-\mathrm{Cl} 0$	117.0 (2)
C6- $\mathrm{Cl}-\mathrm{C} 2$	111.83 (14)	$\mathrm{Cl5}-\mathrm{Cl0}-\mathrm{C} 11$	119.7 (2)
$\mathrm{C} 7-\mathrm{Cl}-\mathrm{C} 2$	112.81 (14)	C15-C10-C9	118.9 (2)
C16-C2-C3	108.9 (2)	$\mathrm{C} 11-\mathrm{C} 10-\mathrm{C} 9$	121.4 (2)
$\mathrm{C} 16-\mathrm{C} 2-\mathrm{Cl}$	108.95 (15)	$\mathrm{C} 12-\mathrm{Cl1}-\mathrm{ClO}$	119.9 (2)
C3-C2-Cl	113.9 (2)	$\mathrm{Cl} 3-\mathrm{Cl} 2-\mathrm{Cl1}$	120.2 (2)
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	114.5 (2)	C12-C13-C14	119.8 (2)
$\mathrm{OI}-\mathrm{C} 4-\mathrm{C} 5$	122.1 (2)	$\mathrm{Cl} 3-\mathrm{Cl} 4-\mathrm{Cl5}$	120.4 (3)
$\mathrm{O1}-\mathrm{C} 4-\mathrm{C} 3$	122.1 (2)	$\mathrm{Cl} 0-\mathrm{Cl} 5-\mathrm{Cl} 4$	119.9 (3)
C5-C4-C3	115.68 (15)	O5-C16-O6	124.9 (2)
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	111.7 (2)	O5-C16-C2	123.9 (2)
C5-C6-C1	112.3 (2)	O6-C16-C2	111.2 (2)
$\mathrm{C} 9-\mathrm{N}-\mathrm{C} 1-\mathrm{C} 6$	169.7 (2)	$\mathrm{C} 7-\mathrm{Cl}-\mathrm{C} 6-\mathrm{C} 5$	-72.4 (2)
$\mathrm{C} 9-\mathrm{N}-\mathrm{Cl}-\mathrm{C} 7$	53.5 (2)	$\mathrm{C} 8-\mathrm{O} 3-\mathrm{C} 7-\mathrm{Cl}$	176.0 (2)
$\mathrm{C} 6-\mathrm{Cl}-\mathrm{C} 2-\mathrm{C} 16$	76.2 (2)	$\mathrm{N}-\mathrm{Cl}-\mathrm{C} 7-\mathrm{O} 3$	-132.4 (2)
$\mathrm{N}-\mathrm{Cl}-\mathrm{C} 2-\mathrm{C} 3$	-163.9(1)	$\mathrm{C} 2-\mathrm{Cl}-\mathrm{C} 7-\mathrm{O} 3$	-12.0 (2)
$\mathrm{C} 7-\mathrm{Cl}-\mathrm{C} 2-\mathrm{C} 3$	77.0 (2)	$\mathrm{Cl}-\mathrm{N}-\mathrm{C} 9-\mathrm{Cl} 0$	174.8 (2)
$\mathrm{C} 16-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	-80.2 (2)	$\mathrm{Cl}-\mathrm{C} 2-\mathrm{Cl} 6-\mathrm{O}$	-72.9 (2)
$\mathrm{N}-\mathrm{Cl}-\mathrm{C} 6-\mathrm{C} 5$	172.3 (2)		

Data collection: XSCANS (Siemens, 1993). Cell refinement: XSCANS. Data reduction: XSCANS. Program(s) used to solve structure: SIR92 (Altomare et al., 1992). Program(s) used to refine structure: SHELXL93 (Sheldrick, 1993). Molecular graphics: SHELXTL-Plus (Sheldrick, 1989). Software used to prepare material for publication: SHELXL93. Molecular geometry calculations: PARST (Nardelli, 1983).

This work was supported by the Dirección General de Investigación Científica y Técnica (project number PB94-0578).

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry have been deposited with the IUCr (Reference: NA1251). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. \& Camalli, M. (1992). SIR92. Program for Crystal Structure Solution. University of Bari, Italy.
Buñuel, H., Cativiela, C. \& Díaz-de-Villegas, M. D. (1994). Tetrahedron Asymmetry, 5, 157-160.

Buñuel, H., Cativiela, C. \& Díaz-de-Villegas, M. D. (1995). Tetrahedron, 51, 8923-8934.
Buñuel, H., Cativiela, C. \& Díaz-de-Villegas, M. D. (1996). Tetrahedron Asymmetry, 7, 1431-1436.
Buñuel, H., Cativiela, C., Díaz-de-Villegas, M. D. \& Gálvez, J. A. (1996a). Acta Cryst. C52, 1252-1254.
Buñuel, H., Cativiela, C., Díaz-de-Villegas, M. D. \& Gálvez, J. A. (1996b). Acta Cryst. C52, 1456-1458.
Buñuel, H., Cativiela, C., Díaz-de-Villegas, M. D. \& Garcia, J. I. (1994). Tetrahedron Asymmetry, 5, 759-766.

Cremer, D. \& Pople, J. A. (1975). J. Am. Chem. Soc. 97, 13541358.

Gante, J. (1994). Angew. Chem. Int. Ed. Engl. 33, 1699-1720.

IUPAC-IUB Commission on Biochemical Nomenclature (1970). Biochemistry, 9, 3471-3479.
Liskamp, R. M. J. (1994). Recl Trav. Chim. Pays-Bas. 113, 1-19. Nardelli, M. (1983). Comput. Chem. 7, 95-98.
Sheldrick, G. M. (1989). SHELXTL-Plus. Release 4.0. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crustal Structures. University of Göttingen. Germany.
Siemens (1993). XSCANS. X-ray Single Crustal Analysis System. Version 2.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Zimmerman, S. S., Pottle, M. S., Nemethy, G. \& Scheraga, H. A. (1977). Macromolecules, 10, 1-9.

[^0]: Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry have been deposited with the IUCr (Reference: BK1245). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

